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A B S T R A C T

Condensation water temperature profiles are collected from a curing process for high-pressure hose products.
The shape of those profiles resembles sine waves with diminishing amplitudes. A gold standard wave profile does
not exist. Instead some wave profiles with various frequency and amplitudes are deemed normal for the water
release operation. To the best of our knowledge, the current practice and research on SPC do not provide a
solution for monitoring wave profiles of this kind. We leveraged existing methods, tools, algorithms that can be
found in open source or commercial software for quick response to this type of problem. The proposed SPC
implementation framework first converts waveform profiles from the time domain to the frequency domain.
Then a set of phase I IX control charts is constructed based on a Partition Around Medoids (PAM) clustering
method. A Support Vector Machine (SVM) classifier is then used to label a new profile to its associated group for
phase II monitoring so that the IX chart associated with a homogeneous group can provide better process
monitoring. Overall 146 water temperature profiles were collected in phase I process, while 39 profiles were
captured in phase II process. Out of those 39 profiles, 6 of which were recognized as abnormal waveform profiles
by quality engineers and our judgements. The proposed framework with machine learning and SPC im-
plementation in the frequency domain works well during phase I control charting with low false alarm rates. The
proposed framework also outperforms the other profile analysis methods in phase II control charting in term of
high detection rate of abnormal profiles.

1. Introduction/Background

High-pressure hoses are made from rubber material with layers of
mental wraps. Rubber products often require a curing process called
vulcanization as the final step to activate cross-linking reaction so that
the tensile strength of finished rubber is stronger (Hoster, Jaunich, &
Stark, 2009). In a curing process, reels of un-vulcanized hose are loaded
into a sealed autoclave or vulcanizer whose in-chamber temperature
and various valves are controlled by a programmable logical controller
(PLC). Once all reels are loaded, the heat-up stage of curing process is
enabled. The PLC monitors the chamber temperature and controls the
steam valve to heat up the chamber until the temperature is reaching to
a fixed target temperature, says, 500 °F. Once the target temperature is
reached, the PLC will activate the curing stage to maintain the target
temperature for a fixed time unit, e.g., 480. Due to the confidential

agreement with the process owner, the curing recipe (i.e., 500 °F and
480 time units) is a process setting for illustration purpose only. The
final stage of the curing process is called cool-down stage to decrease
the chamber temperature. For more details of curing process please see
Fig. 1 and Chang, Tsai, Lin, Chou, and Lin (2012).

This study focuses on an additional control of water valve during the
curing stage (the second stage shown in Fig. 1 of a curing process.
During the curing stage, condensation water accumulates at the bottom
of the chamber. A water valve is installed at the end of the water re-
leasing pipe for releasing condensation water. If this valve fails to open,
the water would keep accumulating at the bottom of a vulcanizer and
cause cosmetic or functional damage of hoses. On the other hand, if the
water valve fails to close, the chamber temperature would be difficult to
maintain and result in energy waste.

Fig. 2 shows a schematic diagram of a vulcanizer with accumulated
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condensation water and the location of valves. A thermocouple is
mounted at the end of condensation water releasing pipe (before the
condensation water valve) to read the condensation water temperature.
One typical condensation water temperature profile is shown in Fig. 3.
Note that once the condensation water temperature is decreased to a
certain degree, the PLC will open the condensation water valve for a
period to release water, and then the water temperature is climbing
rapidly until the condensation water valve is closed. This mechanism
results in the waveform shape of the condensation water profile. Since
the company produces different kind of high-pressure hose products,
they load different reels of hose products into the vulcanizer at the same
time according to production orders. Reels in the vulcanizer may con-
tain different amount of rubber material or different layers of metal
wraps on hoses. It is not a surprise that the condensation water tem-
perature profiles do not have a gold standard.

The condensation water temperature is recorded by a thermocouple
located close to the water valve as shown in Fig. 2. It is also a suitable
indicator of the operation of condensation water valve because it can be
used to detect abnormal situations, such as, malfunction condensation
water valve or thermocouple. However, the current detection method

relies on visual inspection, i.e., through a quick glance of the water-
temperature print out. If a profile contains enough number of waves, it
is deemed as a normal profile. For example, the condensation water
temperature profile shown in Fig. 3 is considered good because it
contains 22 waves. Yet, other acceptable profiles may not contain the
same number of waves. It is a challenge to develop an objective, sys-
tematic process control strategy for inexperienced engineers or opera-
tors. Fig. 4 shows three other examples of in-control waveform profiles.

Current profile analysis techniques can be simply characterized into
two categories, linear and nonlinear profiles regarding to profile shape
structure. Many studies monitored parameters of the linear regression
model, such as, intercept or slope parameter. For example, Kang and
Albin (2000) monitored slope and intercept with the Hotelling’s T2

control chart as the first method to detect abnormal profiles, and they
also proposed the second method, which monitored average residuals
between sample profiles and reference profile followed by EWMA and R
chart. Kim, Mahmoud, and Woodall (2003) proposed three univariate
EWMA charts which monitoring the slope, intercept, and the variance
of deviation between samples and regression line simultaneously.
Hosseinifard, Hosseinifard, Abdollahian, and Zeephongsekul (2011)

Fig. 1. Steps of curing process for high-pressure hose products.

Fig. 2. A schematic diagram of vulcanizer.
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used perceptron neural networks to monitor linear profiles shifted on y-
intercept, slope, or residual variance. Abbas, Qian, Ahmad, and Riaz
(2017) used three univariate Bayesian double exponentially weighted
moving average control charts to monitor the Y intercepts, slopes, and
error variances of linear profiles.

Many techniques in nonlinear profile analysis can be found in
Woodall (2007) and Noorossana, Saghaei, and Amiri (2011). Woodall
(2007) classified nonlinear profile analysis into four categor-
ies—applying multiple and polynomial regression (Kazemzadeh,
Noorossana, & Amiri, 2008; Mahmoud, 2008; Zou, Tsung, & Wang,
2007), applying nonlinear regression models (Ding, Zeng, & Zhou,
2006; Williams, Woodall, & Birch, 2007; Shiau, Huang, Lin, & Tsai,
2009; Chang & Yadama, 2010; Chen & Nembhard, 2011; Wu, Liu, &
Zhou, 2016; Yang, Zou, & Wang, 2017, and Awad, AlHamaydeh, &
Faris, 2018), the use of mixed models (Abdel-Salam, Birch, & Jensen,
2013; Gomaa & Birch, 2019; Jensen & Birch, 2009; Jensen, Birch, &
Woodall, 2008; Paynabar & Jin, 2011; Qiu, Zou, & Wang, 2010), and
the use of wavelets (Chicken, Pignatiello, & Simpson, 2009; Reis &
Saraiva, 2006; Zhou, Sun, & Shi, 2006).

Although the above-mentioned methods are successful in dealing

with the situations in their problem domains, those techniques deal
with profiles that contain specific shape with a standard or model
profile that can be predefined or estimated. In addition, none of these
methods are tested for waveform shape profile and most of these
methods were not software/library/toolbox-readily for quality en-
gineers to use. Since the quality engineers are interested in if water-
releasing cycle is under a statistical control, this study develops a
general SPC implementation framework with machine learning that can
be found in existing open source/commercial software to monitor wa-
veform shape profiles when no gold standard profile can be established.
In the next section, we will describe how the wave profiles are col-
lected.

2. Data collection

In this case study, 146 condensation water temperature profiles
were deemed good, i.e., in control because of their frequent tempera-
ture oscillations. Most importantly, these profiles were collected from
the production batches where high-pressure hose products, the con-
densation water valve, and the condensation water thermocouples were

Fig. 3. An example of condensation water temperature profile.

Fig. 4. Example of three in-control condensation water profiles.
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all in good conditions. No cosmetic or malfunction hose was found in
those production batches. Each wave profile can be presented as vector
as shown in Eq. (1) where n is number of profiles and pi is number of
data points within ith profile. The number of data points within a profile
were collected by sensors of the chamber. These profiles (n = 146 in
this case) will be used to construct phase I control charts.

= … … = … = …W w w w w i n j p[ , , , , , ], 1, 2, 3, , , 1, 2, 3, ,ji ji pi n i11 12 , (1)

The proposed framework is robust in that it strives to achieve a
balance between the lowest false alarm rate and highest accuracy rate.
An experiment is also conducted to examine various well-known clus-
tering methods and dimension-reduction methods that are often applied
to profile analysis with promising results. Then, the best method is
chosen based on the criteria of false alarm rates and accuracy rates. In
this case study, 39 new condensation water temperature profiles were
collected as phase II data to test the proposed framework.

3. The proposed SPC framework

The proposed framework is shown in Fig. 5 that demonstrates the
monitoring the condensation water temperature profiles during the
curing stage of vulcanization process. In phase I, the original waveform
profiles in time domain is transformed to frequency domain using the
Fast Fourier Transformation (FFT), which is a logical choice for dealing
with wave signals. Then, a clustering method is applied to the fre-
quency domain profiles. This step groups frequency-domain signals into
homogeneous clusters. Once all profiles have been clustered to their
associated group, all profiles are processed by a dimension reduction
method so that the reduced outcome for each profile can be plotted into
a control chart. A control chart for each cluster is then to be constructed
based on members of the cluster. Note that the information of the
clusters and their associated membership will be utilized as a dataset
for training a classifier model in phase II. Once the classifier is trained,
it is ready for the phase II process to determine which group a new
profile in frequency domain belongs to. For example, if a new waveform
profile is assigned to cluster k by the classifier, then the parameters
constructed in phase I, such as, mean, standard deviation, and control
limits, can be obtained for phase II process monitoring. If the control

chart indicates that an out-of-control signal occurs, the profile con-
tributed to this out-of-control signal is then considered as an abnormal
profile. More details of the classifier component will be introduced in
the later section.

There are many candidate methods that may be appropriate for the
clustering and dimension reduction functions shown in Fig. 5. We will
not introduce the detailed mechanism of all techniques we examined in
this study. Instead, we will only introduce the methods recommended
in this study. We will also discuss why these methods are applied and
how we expect the results to be. The proposed framework will be still
valid when new or more advanced clustering techniques and dimension
reduction methods are introduced in the future. Quality engineers may
also choose the other methods that they are more familiar with due to
the availability of the computational software and package available to
them.

3.1. Fast Fourier transformation component

Fast Fourier Transformation (FFT) developed by Cooley and Tukey
(1965) is one of the most well-known algorithms to calculate discrete
Fourier Transformation (DFT) for converting a signal from time domain
to frequency. We used Matlab’s fft function to convert profiles. The
output vector of FFT can be defined as Eq. (2) where pf is the size of the
FFT-transformed vector.

= … … = … = …W w w w w i n j p[ , , , , , ], 1, 2, 3, , , 1, 2, 3, ,ji
f f f

ji
f

pf n
f

f11 12 , (2)

We convert the condensation water temperature profiles from the
time domain to the frequency domain in that the original waveform
profiles are too complicated to be directly applied to the existing SPC
profile monitoring methods as reviewed earlier. Fig. 6 shows an ex-
ample of the in-control profile 15 and its Fourier transformed profile.
Although we can observe that the majority frequency of the profile 15 is
0.00091 Hz, there are other frequencies between 0 Hz and 0.01 Hz that
cannot be ignored. After the FFT transformation, we can now treat the
FFT transformed profiles as the other regular profile analysis problems
except that we still need to address the issue of diverse frequency do-
main profiles in the next section.

Fig. 5. The proposed framework for condensation water temperature monitoring.
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3.2. Clustering component

Even though the in-control FFT transformed profiles are potential
representations of the original time domain profiles, they are not
homogeneous. For example, the in-control profile 5 and 15 in frequency
domain has different profile shape in frequency domain as shown in
Fig. 7. Profile 5 has two majority frequencies while profile 15 only has
one peak with gradient decline between 0.0025 Hz and 0.01 Hz.
Therefore, we proposed to cluster the in-control FFT transformed pro-
files into homogeneous groups.

The purpose of a clustering method is to group a set of frequency
domain members as similar as possible within a group, and those
members can be distinguished from the other groups. In this study, we
examine several widely used clustering analysis methods to the FFT
transformed profiles such that members within the same group can be
more homogeneous for subsequent profile analysis.

Table 1 shows the selected clustering methods examined in this
study. Those well-developed methods including hierarchical clustering,
mclust, K-means, Partition Around Medoids, fuzzy clustering, and fuzzy
C-means are candidates for performance comparison (Leisch & Gruen,
2013). These clustering methods were used to group 146 in-control FFT

transformed profiles as defined in Eq. (2). Then, the variance ratio
criterion (VRC) is used as the clustering methods evaluation criterion
(Mooi & Sarstedt, 2011) as shown in Eq. (3).

=VRC SS K
SS n K

/( 1)
/( )

B

W (3)

where K is the number of clusters, n is total number of profiles to be
clustered, SSB is the sum of the squares between clusters, and SSW is the
sum of the squares within the clusters. Note that, the larger the value of
VRC, the better the performance of the clustering method.

According to Table 1, the largest VRC among all clustering methods
is PAM. Note that, PAM requires the prior knowledge of the number of
clusters in advance. Users can either determine the number of clusters
by using Hierarchical Clustering (hclust) or using mclust method, in
which the prior knowledge of the number of clusters is not required. For
more information regarding to clustering analysis methods in R please
refer to Leisch and Gruen (2013).

3.2.1. Partition around medoids
The PAMs clustering algorithm proposed by Kaufman and

Rousseeuw (2005) is the first known algorithm of k-medoids clustering
method (Han, Kamber, & Pei, 2006). Unlike a k-means algorithm that
calculates the mean value of the cluster (centroid) as representative
object of the cluster, a k-medoids algorithm uses the actual data point to
represent the cluster. The objective of PAM is to minimize the cost
function, i.e., sum of dissimilarities between given data points and the
medoids as shown in Eq. (4). Note that, the measurement of dissim-
ilarity between objects can be calculated by Euclidean distance or
Manhattan distance as described in Kaufman and Rousseeuw (2005). A
PAM cost function F is defined as:

Fig. 6. Condensation water temperature profile 15 in (a) time domain and (b) frequency domain.

Fig. 7. Profile 5 and 15 in frequency domain.

Table 1
Clustering methods examined in this study.

Clustering Method R Package Function SSW SSB VRC

Hierarchical
Clustering

stat or
cluster

hclust() 171.949 71.604 29.774

mclust mclust Mclust() 179.856 63.698 25.323
K-means stats kmeans() 156.309 87.245 39.909
PAM cluster pam() 164.266 101.880 44.345
Fuzzy clustering cluster fanny() 166.989 76.564 32.782
Fuzzy C-Means e1071 cmeans() 158.9717 37.172 16.719
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K

W C

f
j

f j (4)

where K is the number of clusters, Wf defined in Eq. (2) is a FFT-
transformed profile assigned in cluster Cj, mj is the medoid of Cj, which
is also a vector of size pf, and d(Wf,mj) is the function of dissimilarity
between FFT-transformed profile Wf and medoid mj. The algorithm of
PAM is shown in Fig. 8. The output of PAM is the FFT-transformed
profile with its class label.

3.3. Classifier component

In data mining, classification analysis constructs a model or classi-
fier to predict the categorical labels. There are two steps in the classi-
fication analysis, training phase (or learning phase) and classification
step. Training phase builds a classifier by learning from a given training
dataset with class labels predetermined, while the classification step
classifies the new data without a given class label to one of the asso-
ciated classes (Han et al., 2006). In Fig. 5, a classifier is needed to
identify a new profile’s membership. However, it needs to be trained
first during the phase I process. The training dataset is generated from a
clustering method, whose output contains the attributes of FFT-trans-
formed profiles along with class labels. Then, the proposed classifier is
constructed by learning from the trained data. Once the classifier is
trained, it assigns a profile to an appropriate cluster for phase II process
monitoring. The classifier used in this study is the SVM classifier.

The SVM classification method has become an indispensable clas-
sifier in machine learning and pattern recognition field. SVM is adopted
as the proposed phase II classifier in that it is one of the most compe-
titive classification methods. Meyer, Leisch, and Hornik (2003) con-
firmed that the SVM is the best classifier among 16 popular classifiers.
Details of the theory and application of SVM may be found in Cortes
and Vapnik (1995) and Campbell and Ying (2011).

The main idea of SVM classifier is mapping input variables into
higher dimensional space using a kernel function to distinguish non-
linearly separable datasets. The choice of a kernel function may result
in different accuracy rates in the same problem domain. Many kernel
functions have been embedded in packages of R. For example, linear,
polynomial, Gaussian radial basis function kernel (RBF), and sigmoid
kernel function. We will apply the svm() function in the e1071 R
package to various training and test datasets. We will also examine the
following kernel functions for the best performance in term of the ac-
curacy rate in phase II process:

=K u v u vLinear Kernel: ( , ) (5)

= +h K u v u vPolynomial Kernel of degree : ( , ) ( 1)h (6)

=K u v eGaussian Radial Basis Function Kernel (RBF): ( , ) u v /22 2

(7)

=K u v u v cSigmoid Kernel: ( , ) tanh( ) (8)

Note that u and v are both p-dimensional vectors, and h, θ, κ, and c
are all parameters that determined by users. For more details in ad-
justing kernel function, please refer to Karatzoglou, Meyer, and Hornik
(2006).

3.4. Dimension reduction component

Montgomery (2009) suggested that the maximum number of di-
mension for a multivariate control chart should be smaller than ten.
When the quality characteristic is defined as all observations in a pro-
file, the dimensions may be in hundreds or thousands. In this case
study, the FFT-transformed profile still contains 256 data points. No
multivariate control chart can handle such a large dimension effec-
tively. Therefore, various traditional profile analysis techniques have
leveraged dimension reduction methods before applied multivariate
control chart to the quality characteristics. They include: (1) wavelet
transformation (Reis & Saraiva, 2006; Zhou et al., 2006; Chicken et al.,
2009); (2) Principal Component Analysis (Ding et al., 2006;
Noorossana, Amiri, & Soleimani, 2008; Shiau et al., 2009); (3) B-Spline
Fitting (Chang & Yadama, 2010; Walker & Wright, 2002; Williams
et al., 2007).

Choosing an appropriate dimension reduction method, we need to
consider the balance between computational cost and performance. The
Euclidian distance (ED) method seems to be a good candidate. Not only
this approach reduces the number of dimensions to one, but also the
steps of calculating the ED between two profiles are simpler than those
of the other dimension reduction methods. In this study, we will com-
pare the proposed method to the other methods. All methods studied
and their associated R packages used in this study are listed as follows:
(1) discrete wavelet transformation: dwt() in wavelets package; (2)
principal component analysis: prcomp() in stats package; (3) cubic B-
spline (BS): ns() in splines package; (4) ED: dist() in stats package. Since
a multivariate control chart, e.g., Hotelling’s T2 or MEWMA, is only
effective in handling the number of dimension of less than ten, the
number of dimensions reduced by wavelet transformation is specified to
eight (or less), while the maximum number of dimensions that reduced
by PCA is no larger than ten.

3.5. Control chart component

In the proposed SPC framework, a control chart plays the role of
decision making. Both multivariate and univariate control charts with
individual observation can be used. If the dimensionality of the di-
mension is reduced to one, individual X control chart (IX chart) can be
obtained. On the other hand, when the number of dimensions is larger
than one after running the dimensional reduction method, the
Hotelling’s T2 control chart with individual observations can then be
used. We can substitute the IX chart with either a EWMA or a CUSUM
chart, and the Hotelling’s T2 control chart with a MEWMA chart de-
pending on the magnitude of the expected shifts. Montgomery (2009)
provides details of both control charts.

To establish the individual control chart based on the independent
observations xi, = …i n1, 2, , the IX control chart parameters are for-
mulated as follows:

= +x dUCL 3MR/ ,2 (9)

= xCL (10)

= x dLCL 3MR/ ,2 (11)

where x is the average of individual observations while MR is the
average of moving ranges of consecutive observations, specifically,

= = x x nMR | |/( 1)i
n

i i2 1 , and =d 1.1282 .
To construct the Hotelling’s T2 control chart with individual ob-

servations (Tracy, Young, & Mason, 1992), one can follow the formula:

=T x x S x x( ) ( )i i i
2 1 (12)

= +p n n
n np

FUCL ( 1)( 1)
p n p2 , , (13)

= n
n

UCL ( 1)
p n p

2

, /2,( 1)/2 (14)

Fig. 8. PAM algorithm.
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=LCL 0 (15)

= V V
n

S
2( 1) (16)

=V v v v[ ]n1 1 (17)

= +v x xi i i1 (18)

The statistics T2 of the ith observation is shown in Eq. (12), where S
is calculated by using the Eq. (16). Moreover, S estimates the variance-
covariance matrix better than that of using the conventional approach if
there was no trend, cycle, etc., in the process. If the process was totally
random, the variance-covariance structure determined by Eq. (16) and
the conventional approach would have no difference (Holmes &
Mergen, 1993). The UCL in Eq. (13) should be chosen when the control
chart monitors phase II process, while Eq. (14) shows the UCL in the
phase I process. Note that, n is number of profiles, p is number of di-
mensions, and α is the confidence level in Eqs. (13) and (14). LCL in
both phase I and phase II is zero.

4. Experimental design

To optimize and test the proposed SPC implementation framework,
we conduct an experiment as shown in Fig. 9. In this experiment, we
use 146 in-control condensation water temperature profiles that col-
lected within two months in 2011 from the hose production manu-
facturing process to construct phase I process. Note that those 146 in-
control profiles will be the training data for SVM classifier for phase II
process if the clustering method is applied to the phase I process. We
also collected extra 39 profiles in different months in 2011 in which 6 of
those were abnormal profiles identified by quality engineers’ and our
judgments. Those abnormal profiles are profile 16, 24, 26, 27, 37, and
39 as shown in Fig. 10, which are superimposed on overall 146 in-

control phase I profiles. According to Fig. 10, the abnormal profile 16,
24, and 27 have unusual period that the condensation water valve was
kept closed after 200-time units. Profile 26 indicated that the valve was
kept closed between 200- and 390-time units. The profile 37 is an ob-
vious failure run of the hoses manufacturing process while the profile
39 indicates that the water valve opened and closed too frequently
comparing to a normal pattern.

Moreover, since the proposed framework consists of machine
learning methods, we investigate the performance in terms of accuracy
rate with and without applying clustering/classification. Note that, all
methods that without applying machine learning methods are cate-
gorized as traditional profiles analysis methods, such as,
DWT + Hotelling’s T2, PCA + Hotelling’s T2, BS + IX, and ED + IX.
The clustering method used in the proposed framework is PAM due to
its highest VRC value based on the phase I data described in the above
section. PAM is used to determine the clusters and their memberships
which are then used as the training data for a SVM classifier. Because
different kernel function in SVM classifier may result in different ac-
curacy rates, therefore, four popular kernel functions specified in Fig. 9
will be investigated in this experiment so that we can optimize the
proposed framework. The performance criteria used in this experiment,
false alarm rates and accuracy rate, are introduced in the next section.

5. Performance comparison

We use false alarm rates to evaluate the proposed framework in a
phase I process, and the accuracy rate in a phase II process in this study.
The accuracy rate can be calculated from the information listed in a
confusion matrix that is often used in the machine learning field. The
true positives (TP) are the number of in-control observations assigned
to the in-control group, while the true negatives (TN) are out-of-control
observations classified as the out-of-control group. If in-control

Fig. 9. The experimental design of the proposed SPC implementation framework for the condensation water temperature profiles.
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observations are assigned to the out-of-control group, they are called
false negatives (FN). On the other hand, when out-of-control observa-
tions are classified to the in-control group, they are called false positives
(FP). Moreover, according Han et al. (2006), the accuracy rate can be
defined in Eq. (19). The accuracy is a function of sensitivity and spe-
cificity defined in Eqs. (20) and (21), respectively. Sensitivity and
specificity are known as true positive rate and true negative rate, i.e.,
the proportion of positive tuples and negative tuples are all correctly
identified. The accuracy rate is a good indicator of optimizing the
proposed framework because it provides overall performance criteria,
such as, sensitivity and specificity, in one value.

= +
+ + +

+ +
+ + +

accuracy sensitivity TP FN
TP FN FP TN

specificity FP TN
TP FN FP TN

( )
( )

( )
( )

(19)

=
+

sensitivity TP
TP FN( ) (20)

=
+

specificity TN
FP TN( ) (21)

6. Analyses and interpretations

In this section, the performance results of the experiment expressed
in above section will be shown and discussed. We will discuss the re-
sults in the two phases of process monitoring, i.e., phase I and phase II
process.

6.1. Phase I process

In the phase I process, we examined the performance of four di-
mension-reduction methods on frequency domain with and without
applying a clustering method based on 146 in-control condensation
water temperature profiles collected from the hoses manufacturing
process. The performance results of the experiment for phase I process
are shown in Table 2 in ascending order of the false alarm rate. From
Table 2, the analysis in the frequency domain dominates the top three
spots. Specifically, the cubic BS method shows the lowest false alarm
rate as well as smallest number of false alarms with and without ap-
plying clustering method among all dimension reduction methods.
Moreover, according to the bar chart of the four dimension- reduction
methods shown in Fig. 11, BS and ED method performs better (i.e. with
smaller average false alarm rates) than other methods in phase I pro-
cess. In fact, both BS and ED methods show very competitive results in
frequency domain with or without applying the clustering method to
the waveform profiles in phase I process as shown in Table 2. We ex-
amine the top three methods that result the first three lowest false
alarm rate in phase I data, i.e., FFT + BS, FFT + PAM + BS, and
FFT + PAM+ ED. Note that, the BS method we used in the experiment

Fig. 10. Six abnormal condensation water temperature profiles in phase II process (thick solid line: abnormal profiles; thin dot lines: overall 146 in-control profiles in
phase I).

Table 2
Performance results of the experiment for phase I data.

Domain dim.
Reduction

# of false
alarm

False alarm
rate

The proposed framework FFT BS 1 0.0068
ED 2 0.0137
DWT 19 0.1301
PCA 28 0.1918

Traditional profile
analysis tools

Time BS 3 0.0205
ED 5 0.0342
DWT 10 0.0685
PCA 15 0.1027

FFT BS 0 0.0000
ED 5 0.0342
DWT 11 0.0753
PCA 16 0.1096

w/: with clustering method; w/o: without clustering method; WT: wavelet
transformation; PCA: principle component analysis; BS: cubic b-spline; ED:
Euclidian distance.
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is modified from one segment method of Chang and Yadama (2010).
Specifically, the output of the BS is calculated by sum of absolute value
of deviation between the cubic BS fitting curve of the FFT-transformed
profile and the mean profile of the cluster. The mean profile of each
cluster is also generated by cubic-BS fitting. Therefore, the di-
mensionality of the problem is reduced from 256 to one.

Fig. 12, Fig. 13, and Fig. 14 show the IX charts for these three
methods. Note that, although FFT + BS’ false alarm rate is zero, the
control limits calculated in IX chart maybe misleading. Considering
there are three distributions within the 146 profiles, it is not proper
directly applying an IX chart to the data. In our case, those 146 data
points didn’t pass the normality test (Shapiro-Wilk Normality Test, P-
Value < 0.01), therefore the control limited in IX chart may not reflect
the proper range for those data points and cause higher type II error.
And we do not suggest using FFT + BS in this case. On the other hand,
we examined the normality (Shapiro-Wilk) for those three clusters de-
termined by PAM, the P-Value of cluster 1, 2, and 3 are 0.092, 0.742,
and 0.81. In other words, we cannot reject those three groups are three
normal distributions, thus, IX charts are rational to use on those three
groups respectively.

Although Fig. 13 and Fig. 14 shows three out-of-control points in
total in the IX chart, it is a reasonable step to remove those out-of-
control points from the IX chart during constructing phase I process
control chart. After those three points were removed from the cluster 1

in Fig. 13 and Fig. 14, the results of IX charts of cluster 1 by using
FFT + PAM + BS and FFT + PAM + ED show that both methods are
ready for phase II monitoring since no point is outside the control limits
as shown in Fig. 15. Note that FFT + BS in Fig. 12 only uses one control
chart for phase II monitoring because no clustering method is used to
assigned profiles into homogeneous groups.

6.2. Phase II process

Phase II data contains 39 condensation water temperature profiles,
and 6 of which are recognized as abnormal waveform profiles by
quality engineers and our judgments as shown in Fig. 10. The perfor-
mance results of the experiment for phase II data are shown in Table 3
in the descending order of the accuracy rate defined in Eq. (19). In
Table 3, the method that combines the SVM classifier with RBF kernel
function and ED has the best performance due to its largest accuracy
rate among all methods studied. Moreover, the first two highest accu-
racy rates that were applied SVM classifier with ED dimension reduc-
tion method on frequency domain to the phase II data provide sensi-
tivity rate of 1. In other words, they can identify all in-control profiles
correctly, that is, no profile has been falsely detected as out of control in
the phase II process using those methods. Even though the specificity
rates that provided by SVMRBF + ED and SVMsigmoid + ED are not the
highest rate, their overall performance scores in terms of accuracy rates
are higher than the other methods.

Although the FFT + BS shows the lowest false alarm rate in phase I
process, its specificity rate is 0.33 and the overall performance in terms
of accuracy rate is 0.87. In other words, the proposed SPC im-
plementation framework with machine learning that applies FFT and
clustering/classification to the waveform profile analysis can not only
provide a solid phase I process control chart but also construct com-
petitive phase II process control chart than other methods examined in
this study. Therefore, based on the sensitivity rate of 1, specificity rate
of 0.83, and the overall performance in terms of accuracy rate of 0.97,
we recommend the combination of the FFT, the clustering (PAM)/
classification (SVM with RBF kernel function) method, and the di-
mension reduction approach (ED).

7. Instruction for using the proposed framework

The proposed SPC with machine learning methods use wide vari-
eties of signal processing and statistical techniques. Bridging the model
development and practical implantation, we offer a step-by-step

Fig. 11. Bar chart of the four dimension reduction methods and their average
false alarm rates.

Fig. 12. The IX chart of 146 in-control waveform profiles in phase I process using FFT + BS method.
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instruction to implement the proposed methods.

7.1. Construction of the phase I process:

1. Screen out all abnormal wave profiles and treat the rest of profiles as
phase I data.

2. Convert all phase I data from time domain to frequency domain
using FFT.

3. Apply the PAM cluster method to all FFT-transformed profiles. If
users want to use another cluster method, performance of the new
cluster method should be compared with PAM in terms of VRC as
shown in Eq. (3).

4. Once all profiles have been clustered to their associated groups, the
users should—
4.1. Use information of the clusters and their associated mem-
berships to train a classifier model (SVM) for the phase II process.
4.2. Utilize a dimension-reduction method (ED) for all profiles
within a homogenous group. If users would like to try new di-
mension-reduction method, and accuracy rate should be utilized
for performance comparison.

5. A control chart is then constructed for each cluster. If we have K
clusters, then we will have K control charts. All information, such as
mean, variance, and control limits of each cluster, will be used in the
phase II process.

6. If batch combinations are changed so that new acceptable clusters
emerge, the phase I process should be repeated again. Specifically,

quality engineers can repeat steps 1 to 3 for data collected in a fu-
ture production period. If additional clusters are generated, the
proposed phase I process should be repeated to establish new con-
trol charts.

7.2. Construction for phase II process

1. Convert a new wave profile from time domain to frequency domain
using FFT.

2. Apply a trained classifier (SVM) to the FFT-transformed profile and
determine which cluster the new profile belongs.

3. Apply the dimension-reduction method (ED) to the new FFT-trans-
formed profile to calculate the plotting statistic.

4. Plot the statistic in step 3 to control chart k with corresponding
mean, variance, and control limits. If the statistic exceeds control
limits, the new wave profile is deemed an abnormal profile.

8. Conclusions and recommendations

Profile monitoring using SPC has been studied in manufacturing
process in recent years. Many researches provided successful ap-
proaches in their problem domain. However, no study has been found
in the monitoring of process stability when the profile shape is a wa-
veform without a gold standard. Since waveform profiles generated
from a manufacturing process may consist of various magnitudes and
frequencies, the process monitoring problem becomes more challenging

Fig. 13. The IX charts of 146 in-control waveform profiles in phase I process for each cluster using FFT + PAM + BS method.

Fig. 14. The IX charts of 146 in-control waveform profiles in phase I process for each cluster using FFT + PAM + ED method.

S.-H. Chou, et al. Computers & Industrial Engineering 142 (2020) 106325

10



due to the homogeneity issue. In this study, we propose a SPC im-
plementation framework that consists of FFT and the clustering/clas-
sification method as well as the dimension reduction approach to
monitor waveform profiles. The proposed framework can identify ab-
normal wave profiles with minimal false alarms based on both phase I
and phase II data sets.

We compared the proposed method to a few widely used dimension
reduction techniques in profile analysis, such as, wavelet transforma-
tion, principle component analysis, and BS transformation. We also
considered applying clustering/classification method on frequency do-
main. The phase I and phase II datasets in the experiment are from the
condensation water temperature profiles that collected from the curing
process of the high-pressure hoses. According to Table 2, the proposed
framework in phase I (FFT + PAM + ED) constructs a solid phase I
process control chart with competitive performance in terms of false

alarm rates after removing abnormal data points. In addition, as shown
in Table 3, the proposed framework in phase II
(FFT + PAM + SVMRBF + ED) dominates other profile analysis tech-
niques with respect to the accuracy rate. In summary, we recommend
the use of FFT + PAM + ED in constructing phase I process, and
FFT + SVMRBF + ED in phase II. To leverage the proposed framework
when new or more advanced clustering, classification, and control
charting techniques are introduced in the future, quality engineers may
follow the procedure to choose the other methods that provide better
performance, or they are more familiar with due to the availability of
the computational software and package available to them.

Although the proposed method provides robust results than the
other profile analysis techniques mentioned above in this problem do-
main, new fitting/control charting techniques may provide better per-
formance in the future. We encourage more researchers conduct study

Fig. 15. The IX charts of Cluster 1 using FFT + PAM + BS and FFT + PAM + ED with out-of-control points removed in constructing phase I process.

Table 3
Performance results of the experiment for phase II data.

Domain Dim. Reduct. kernel TP TN FP FN Sensitivity Specificity Accuracy

The proposed framework FFT ED RBF 33 5 1 0 1.0000 0.8333 0.9744
Sigmoid 33 4 2 0 1.0000 0.6667 0.9487
Linear 33 2 4 0 1.0000 0.3333 0.8974
Poly 25 5 1 8 0.7576 0.8333 0.7692

BS RBF 26 6 0 7 0.7879 1.0000 0.8205
Sigmoid 26 6 0 7 0.7879 1.0000 0.8205
Linear 26 6 0 7 0.7879 1.0000 0.8205
Poly 24 6 0 9 0.7273 1.0000 0.7692

DWT RBF 23 1 5 10 0.6970 0.1667 0.6154
Sigmoid 23 1 5 10 0.6970 0.1667 0.6154
Linear 23 0 6 10 0.6970 0.0000 0.5897
Poly 24 1 5 9 0.7273 0.1667 0.6410

PCA RBF 30 5 1 3 0.9091 0.8333 0.8974
Sigmoid 30 5 1 3 0.9091 0.8333 0.8974
Linear 30 3 3 3 0.9091 0.5000 0.8462
Poly 30 3 3 3 0.9091 0.5000 0.8462

Traditional profile analysis tools Time ED NaN 33 1 5 0 1.0000 0.1667 0.8718
BS 33 1 5 0 1.0000 0.1667 0.8718
DWT 26 5 1 7 0.7879 0.8333 0.7949
PCA 33 1 5 0 1.0000 0.1667 0.8718

FFT ED 33 0 6 0 1.0000 0 0.8462
BS 32 2 4 1 0.9697 0.3333 0.8718
DWT 31 5 1 2 0.9394 0.8333 0.9231
PCA 32 1 5 1 0.9697 0.1667 0.8462

w/: with clustering method; w/o: without clustering method; WT: wavelet transformation; PCA: principle component analysis; BS: cubic b-spline; ED: Euclidian
distance; linear: linear kernel function; RBF: RBF kernel function; poly: Polynomial kernel function; sigmoid: sigmoid kernel function.
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when no gold standard reference exists in a process.
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